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Vectorial Swift-Hohenberg equation for transverse laser patterns
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~Received 16 April 2003; published 17 December 2003!

The consequences of introducing the polarization degree of freedom of the light are studied for the trans-
verse patterns of a laser with detuning equal to zero. We deduce the vectorial Swift-Hohenberg amplitude
equation from the corresponding Maxwell-Bloch equations. The vectorial character of the equation introduces
modifications in the stability of traveling waves and new types of localized structures.
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Studies of optical pattern formation@1# share a number o
features with general investigation of structures and insta
ties in other physical systems@2#. Nevertheless, there ar
also specific features of optical systems such as the pres
of diffraction instead of diffusion and the vectorial degree
freedom associated with the polarization of the light.

Lasers with large aspect ratio present an excellent op
tunity for the study of extended structures in nonlinear op
cal systems. Much work has been already done both theo
cally and experimentally@3#. Dotlike localized structures
produced by phase singularities@4# have been experimentall
observed in lasers@5# and other optical systems@6#.

The Maxwell-Bloch~MB! equations can be used to d
scribe transverse patterns in single longitudinal mode las
where the active medium is composed of two level ato
inside a cavity with flat mirrors~one of which is partially
reflecting!. An important parameter for determining the b
havior of the system is the cavity detuningV5(v12
2vc)/g' , where v12 is the atomic frequency,vc is the
cavity resonance frequency closest tov12, and g' is the
decay rate of polarization. From a linear stability analysis@7#
it can be shown that the first wave numbers that beco
unstable as the laser pump is increased arekc50 if V,0
andkc56AV/a in one-dimension~1D! ~or a ring of minima
in 2D! if V.0, wherea is the strength of diffraction.

The direction of the electric field in laser cavities is us
ally fixed by Brewster windows. The polarization of the fie
is linear and fixed in one direction. A model where the ele
tric field and the polarization of the medium are scalar qu
tities is appropriate in this case. Close to the instabi
threshold, the MB equations can be reduced to an amplit
equation and the system variables can be expressed in t
of only one complex amplitude. IfV,0, a complex
Ginzburg-Landau equation~CGLE! is obtained. If V.0,
since there are two modes that become unstable sim
neously in 1D, the description requires two coupled CGL
If V50, a complex Swift-Hohenberg equation~CSHE! is
obtained instead of a CGLE. It has been shown that even
VÞ0, but close to 0, a CSHE is appropriate for the desc
tion of the system@8#. Despite the peculiarities of differen
lasers, an analysis and classification of possible states c
to threshold is provided by this equation, at least for clasA
and C lasers.~The classification of lasers is based on t
relations among the decay rate of population differenceg i ,
the cavity decay ratek, and g' . For a classA laser,
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g' , g i@k; for a classB laser,g'@k@g i ; and for a classC
laser,k;g';g i @9#. An argument against the validity of th
equation for a classB laser is provided in Ref.@8#.! The
CSHE has been used also for the description of optical p
metric oscillators@10# and photorefractive materials, where
has qualitatively reproduced experimental results@11#.

In this paper we will focus on the laser MB equations f
the caseV50, and will generalize the results for the situ
tion when the polarization degree of freedom is taken i
account~for example, by removing the Brewster windows!.
We consider as a prototype situation, transitions from sta
Jz561 in the upper level toJ50 in the lower level, which
produces the circularly polarized components of the elec
field. The standard MB equations are extended to@12,13#,

]E6

]t
5 ia¹2E62sE61sP6 ,

]P1

]t
52~11 iV!P11rE12N1E12ME2 ,

]P2

]t
52~11 iV!P21rE22N2E22M* E1 ,

]N6

]t
52bN61

1

2
~E6* P61E6P6* !1

1

4
~E7* P71E7P7* !,

]M

]t
52cM1

1

4
~E1P2* 1E2* P1!, ~1!

where E65(Ex6 iEy)/A2 are the right and left circularly
polarized components of the electric field,P6 are the com-
plex material polarizations,N6 are the population differ-
ences between levels (J51,Jz561) and (J50), andM de-
scribes interaction between upper level states (Jz51) and
(Jz521). The parameters area5cl

2/(2vcg'), the strength
of diffraction, wherecl is the speed of light;r is proportional
to the pumping and plays the role of control parameter;s, b,
and c are normalized material decay rates, particularlys
5k/g' and b5g i /g' . The time is adimensional and i
scaled withg' . ¹25]x

21]y
2 is the Laplacian in the plane

perpendicular to light propagation. The fast variatio
exp(ikzz2ivct), has been eliminated using the slowly varyin
©2003 The American Physical Society04-1
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envelope approximation. Equations~1! have been studied in
the caseV,0, where via the reductive perturbation meth
a vector CGLE is obtained@13#.

The nonlasing state (E65P65N65M50) becomes
unstable if the control parameterr is greater than a critica
valuer c , with r c51 for V50. It can be shown that, abov
threshold, the modes that grow are the ones that have w
numbersk within a band of widthR1/4 centered aboutkc
50, whereR5r 21 is the distance to threshold. The appr
priate scaling for the spatial variables isX5R1/4x and Y
5R1/4y. The real and imaginary parts of the eigenvalue
the active mode have different slow time scales, nam
T15R1/2t and T25Rt. Introducing these changes of var
ables in Eqs.~1!, identifying coefficients of different order
of R, and applying the solvability condition, we obtain th
vectorial Swift-Hohenberg equation,

~11s!
]A6

]t
5sRA61 ia¹2A62

sa2

~11s!2
¹4A6

2
sR

b S uA6u21
b1c

2c
uA7u2DA6 , ~2!

where we have returned to the original space and time sc
The interest in amplitude equations such as Eq.~2! resides in
their universality. Many physical systems with the same k
of instability and same symmetries can be described with
same equation; and the fact that, close to threshold, all
system variables are equal to the amplitudeA6 times the
unstable eigenvector. For example, the electric field com
nents areE65R1/2A6 @14#. The number of free paramete
of Eq. ~2! can be reduced using the following scaling:x
→x(2sa)1/2/(11s), t→t 4s/(11s), A6→A6(1
1s)b1/2/(2sR1/2). The resulting equation is,

]A6

]t
5~e21!A61~11 i¹2!2A62~ uA6u21guA7u2!A6 ,

~3!

wheree5R 4s2/(11s)2 is proportional to the distance t
threshold, and the coupling parameterg is related to materia
decay rates@g5(b1c)/(2c)#. The main difference with the
form of the standard Swift-Hohenberg equation is that
Laplacian is imaginary, representing diffraction instead
diffusion; this difference makes the usual potential@2# not
suitable in this case. Equation~3! is a simple model, with
only two free parameters, useful to theoretically study tra
verse patterns in lasers at peak gain (V50) and when the
vectorial degree of freedom of the light is taken into accou
~It can be shown that the necessary precision for the co
tion V50 is V!R.! Sinceb and c are positive constant
andc.b, the range of possible values ofg is between 1/2
and 1. But, as we mentioned before, one of the main qual
of amplitude equations is their universality. Then, becaus
the potential application of Eq.~3! to other physical system
~mainly optical! it is interesting to study its behavior for a
possible values of parameterse andg.
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The homogeneous stationary solutions coincide with
ones that are obtained for the vector CGLE with real coe
cients@15#. A more general solution is a family of travelin
waves in 1D,

A65Q6ei (k6x2v6t1u06), ~4!

whereQ6
2 1gQ7

2 5e2k6
4 andv652k6

2 . We will consider
the situation where both amplitudesQ1 andQ2 are different
from zero. This is the case when21,g,1. Due to the
symmetric intensity coupling of Eq.~3!, both amplitudes
tend to the same value,Q15Q25Q. So, uk1u5uk2u5k
and v15v25v. We have Q25(e2k4)/(11g) and v
52k2. There is a range of possible values of the wave nu
ber, 0,k,e1/4, and there are two possible cases: copro
gating waves (k15k2) and counterpropagating waves
standing wave (k152k2). We investigate the stability o
these two cases~submitted to long-wavelength perturbation
corresponding to Eckhaus instability! and summarize the re
sults by drawing the domains of existence and stability in
(e,k) plane~Busse balloon!.

For copropagating waves (k15k2), after the adiabatic
elimination of the amplitude equations, the phase equati
turn out to be decoupled,

] tf6524k]xf61S 6k22
8k6

Q2~16g!
D ]2f6 , ~5!

wheref65u16u2 , with u6 being the phase perturbatio
of the solution~4!; f1 is the global phase andf2 is the
relative phase associated with a polarization instability. T
stability condition associated to the global phase ise
.(7/3)k4, which is equal to the one obtained for the sca
case. The vectorial degree of freedom adds a new stab
condition, given bye.k4(71g)/@3(12g)#, which corre-
sponds to the relative phase; this condition is more restric
than the previous one for 0,g,1.

For counterpropagating waves (k152k2), coupled
phase equations are obtained,

] tf6524k]xf71S 6k22
8k6

Q2~17g!
D ]2f6 . ~6!

Equation ~6! has two equal stability conditions, namely,e
.k4(723g)/@3(12g)#. This condition is, again, more re
strictive than the one that corresponds to the scalar case
0,g,1.

In Fig. 1 we show the stability regions for both case
Note that, wheng→0, the stability conditions tend toe
.7/3k4 ~scalar case!, since, in this case, the vectorial Eq.~3!
is transformed into two independent scalar equations. W
g→1 from the left, the Busse balloon shrinks to a narro
vertical band centered aboutk50. The stability domain dis-
appears forg.1 and traveling waves with equal amplitud
in both fields are no longer stable.

The main result of the previous linear stability analysis
that the vectorial case is not a trivial extension of the sca
case, since drastic changes in the stability of traveling wa
are introduced.
4-2
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Starting from random initial conditions in 2D, we foun
numerically @16# a rich variety of behaviors. We mentio
only three characteristic situations, shown in Fig. 2. In Fi
2~a! and 2~b! we show amplitude and phase of one of t
components of the field fore50.3 andg50.1; domains with
a phase singularity delimited by shock waves are seen in
amplitude, while spiral patterns appear in the phase. Sim
patterns have been found in the scalar@17,18# or vectorial
CGLE @19,15#; the difference here is that the spirals appe
distorted, with great variations of the pitch. The amplitu
evolves very slowly in time; this situation is usually consi
ered as a frozen phase@20#. Patterns obtained for the param
eters in the allowable range for lasers are of this kind. F
ures 2~c! and 2~d! corresponds toe51.5 andg51.5; for g
.1 the homogeneous stable solutions areQ650, Q7

2 5e,
and the system segregates in regions where each sol
dominates. There are also defects or phase singularities.
bright dots in black background correspond to defects in
other component of the field. Note that, in this case,
phase spirals are two armed, meaning that the topolog
charge of the defects isn562. This is not a common situ
ation since usually defects with topological chargeunu.1 are
unstable and detach in defects of smaller charge. Figures~e!

FIG. 1. Existence and stability regions of the traveling wa
solution. The continuous line is the limit of the existence doma
The dotted line is the limit of the stability domain in the scalar ca
~or g50). The region filled with parallel lines is the stability do
main of traveling waves withg50.5. ~a! Copropagating waves,~b!
counterpropagating waves.

FIG. 2. Numerical results starting from random initial cond
tions. Top row:uA1u, bottom row: phaseu1 . ~a! and ~b! e50.3,
g50.1; ~c! and ~d! e51.5, g51.5; ~e! and ~f! e52, g50.1.
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and 2~f! correspond toe52 and g50.1; in this case, the
defect-dominated pattern gives place to a plane wave.
role of the defects is reduced to dislocations in the str
pattern, as is clearly seen in the phase plot@Fig. 2~f!#. The
defects are drifted in the direction of propagation of the pla
wave. In some cases, the defects arrange in stable and
plex structures as the one shown in Fig. 3. The struct
moves as a rigid body in the direction of the arrow.

We found that, for some specific values of the parame
~for example,e51 andg520.1), vectorial topological de-
fects are stable~see Fig. 4!. These are defects that are prese
simultaneously in both components of the field at the sa
point @21,22#.

Another interesting and new localized structure is an a
plitude spiral~note that, in optical pattern formation, spira
usually appear only in the phase! shown in Fig. 5. The figure
shows that the amplitude spiral is directly related with t
module of the phase gradient. Another important factor
the formation of this structure is the presence of the vecto
coupling between the components of the field. The amplitu
spiral disappears if the coupling is eliminated.

In conclusion, we introduced the vectorial CSHE for t
description of transverse patterns of lasers at peak gain.

.
e

FIG. 3. Rigid and symmetric structure of defects that move
the direction of the arrow. From left to right, amplitudeuA1u and
phaseu1 . Parameters:e52, g50.1.

FIG. 4. Vectorial defects. From left to right,uA1u, uA2u and
global phasef15u11u2 . Top row: argument defect~same
charge!. Bottom row: director defect~opposite charge!. A two-
armed spiral appears in the global phase of the argument de
while a target pattern appears for the director defect. Parame
e51, g520.1.
4-3



o
al
e
p

ains
tition
ere
iral
rge
her

r-
Ci-

-

nt

RAPID COMMUNICATIONS

M. HOYUELOS AND M. DELL’ERBA PHYSICAL REVIEW E 68, 065604~R! ~2003!
vectorial character of the equation modifies the stability
traveling waves via a polarization instability. Numeric
simulations reveal a wide variety of behaviors and localiz
structures. Some of them were already seen in other am

FIG. 5. From left to right,uA1u (black50.9,white51.05), u1 ,
andu¹u1u. The amplitude spiral is directly related with the gradie
of the phase. Parameters:e50.5, g520.5.
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d
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tude equation models, such as vectorial defects, dom
separated by shock waves, and segregation and compe
between two different homogeneous solutions. Others w
not previously reported in optical systems, such as sp
waves with distorted pitch, phase singularities with cha
greater than 1, and amplitude spirals, which require furt
and more extensive analysis.
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