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The consequences of introducing the polarization degree of freedom of the light are studied for the trans-
verse patterns of a laser with detuning equal to zero. We deduce the vectorial Swift-Hohenberg amplitude
equation from the corresponding Maxwell-Bloch equations. The vectorial character of the equation introduces
modifications in the stability of traveling waves and new types of localized structures.
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Studies of optical pattern formati¢d] share a number of ,, | > «; for a classB laser,y, > «> v ; and for a clas€
features with general investigation of structures and instabilitgger ,~ .~ [9]. An argument against the validity of the
ties in other physical syste_n{Q]. Nevertheless, there are equation for a clas® laser is provided in Ref[8].) The
also specific features of optical systems such as the presene&HE has been used also for the description of optical para-
of diffraction instead of diffusion and the vectorial degree of metric oscillator§10] and photorefractive materials, where it
freedom asspuated with the pplarlzatlon of the light. has qualitatively reproduced experimental resft.

Lasers with large aspect ratio present an excellent oppor- |, this paper we will focus on the laser MB equations for
tunity for the study of extended structures in nonlinear opti-he case)=0. and will generalize the results for the situa-
cal systems. Much work has been already done both theorefiipn when the polarization degree of freedom is taken into
cally and experlmentall>{3]: Dotlike localized structures  4ccount(for example, by removing the Brewster windows
produced by phase singularitip$j have been experimentally e consider as a prototype situation, transitions from states
observed in lasergs] and other optical systenj§]. J,=*1 in the upper level td=0 in the lower level, which

The Maxwell-Bloch(MB) equations can be used to de- yroqyces the circularly polarized components of the electric

scribe transverse patterns in single longitudinal mode lasergg|q. The standard MB equations are extendefl®y13
where the active medium is composed of two level atoms

inside a cavity with flat mirror§one of which is partially JE.

reflecting. An important parameter for determining the be- =iaV?E.—oE.+oP.,

havior of the system is the cavity detunin= (w1, N

—wy)!y, , where w, is the atomic frequencyp, is the JP

cavity resonance frequency closestdag,, and y, is the i =—(1+iQ)P.+rE;,—N_E,—ME_,
decay rate of polarization. From a linear stability analygis ot

it can be shown that the first wave numbers that become 5

unstable as the laser pump is increasedlare0 if Q<0 oP_ : .
andk.= *+/Q)/a in one-dimensiori1D) (or a ring of minima Tt (1+iQ)P_+rE_—N_E_~M"E.,

in 2D) if >0, wherea is the strength of diffraction.

The direction of the electric field in laser cavities is usu- gN. 1 1
ally fixed by Brewster windows. The polarization of the field ——=—bN. +§(E§ P.+E.P%) +Z(E§ P-+E=P%),
is linear and fixed in one direction. A model where the elec-
tric field and the polarization of the medium are scalar quan-
e ! . . - - oM 1
tities is appropriate in this case. Close to the instability —=—cM+ = (E,P*+E*P,), (1)
threshold, the MB equations can be reduced to an amplitude at 4
equation and the system variables can be expressed in terms ) ) )
of only one complex amplitude. 1{0<0, a complex Where E. =(Ex*iE,)/\2 are the right and left circularly
Ginzburg-Landau equatiofCGLE) is obtained. I1f)>0,  Ppolarized components of the electric fieRl, are the com-
since there are two modes that become unstable simult@/ex material polarizationsN.. are the population differ-
neously in 1D, the description requires two coupled CGLEsences between levels€1,J,=*1) and J=0), andM de-
If Q=0, a complex Swift-Hohenberg equatié@SHE) is  Scribes interaction between upper level statés=(1) and
obtained instead of a CGLE. It has been shown that even fdd,= —1). The parameters aee=c{/(2w.y,), the strength
Q+#0, but close to 0, a CSHE is appropriate for the descripof diffraction, wherec, is the speed of light; is proportional
tion of the systeni8]. Despite the peculiarities of different to the pumping and plays the role of control parameierb,
lasers, an analysis and classification of possible states clog@d ¢ are normalized material decay rates, particularly
to threshold is provided by this equation, at least for class =«/y, and b=1y;/y, . The time is adimensional and is
and C lasers.(The classification of lasers is based on thescaled withy, . V2:&§+ (95 is the Laplacian in the plane
relations among the decay rate of population differepce  perpendicular to light propagation. The fast variation,
the cavity decay ratex, and y, . For a classA laser, exp(kz—iwdt), has been eliminated using the slowly varying
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envelope approximation. Equatiofly have been studied in The homogeneous stationary solutions coincide with the

the cas«) <0, where via the reductive perturbation methodones that are obtained for the vector CGLE with real coeffi-

a vector CGLE is obtainefl3]. cients[15]. A more general solution is a family of traveling
The nonlasing stateH.=P.=N.=M=0) becomes waves in 1D,

unstable if the control parameteris greater than a critical (KX a4 004

valuer,, with r.=1 for Q=0. It can be shown that, above Ar=Q e w0, (4)

threshold, the modes that grow are the ones that have wav 5 2_ .4 a2 . .
numbersk within a band of widthRY* centered abouk, vsherthJr ¥Q5=e—k: andw. =2k . We will consider

—0, whereR=r — 1 is the distance to threshold. The appro- the situation where both amplitud@s, andQ_ are different

- - . ; ) 1 from zero. This is the case whenl<y<1. Due to the
priate scaling for the spatial variables ¥=RY¥ and Y symmetric intensity coupling of Eq(3), both amplitudes

=RYYy. The real and imaginary parts of the eigenvalue of 90 e
the active mode have different slow time scales, namelytend to the same valu®, =Q_=Q. So, [k.|=[k_|=k

— — 2__ 4
T,=RY% and T,=Rt. Introducing these changes of vari- and o, =w_=w. We haveQ"=(e—k")/(1+y) and w

ables in Eqs(1), identifying coefficients of different orders E2k difrel,f arange of posf'b'e Va'“%f of the wave num-
of R, and applying the solvability condition, we obtain the er, €, an ere are two possible cases. copropa-

vectorial Swift-Hohenberg equation gating waves K, =k_) and counterpropagating waves or
' standing wave K, = —k_). We investigate the stability of

these two case&ubmitted to long-wavelength perturbations
oa V4A corresponding to Eckhaus instabi)itgnd summarize the re-
(1+0)? x sults by drawing the domains of existence and stability in the
(e,k) plane(Busse balloon
oR , b+c ) For copropagating wavesk(=Kk_), after the adiabatic
b A"+ 2—C|A:| As, (2 elimination of the amplitude equations, the phase equations
turn out to be decoupled,

2

A _
(1+o)(9—t_=oRAi+|aV2AI—

where we have returned to the original space and time scales.

The interest in amplitude equations such as@yresides in dypr=—4Kdyp. + ( 6k —
their universality. Many physical systems with the same kind Q*(1xy

of instability and same symmetries can be described with the . . .
same equation; and the fact that, close to threshold, all thyhered.. = 0. 9_* ' W'_th 0- being the phase pertgrbatlon
system variables are equal to the amplitusle times the of th_e solution(4); ¢ff IS thg global phas‘? aan IS _the
unstable eigenvector. For example, the electric field Compor_elatlve phase associated with a polarization instability. The

nents areE. =RY2A. [14]. The number of free parameters stability condition associated to the global phase eis
of Eq. (2) can be Feducéd using the following scaling: > (7/3)k*, which is equal to the one obtained for the scalar
_}X(Z'Ua)l/z/(lJrU) t—tdol/(1+0) A.—A.(1 " case. The vectorial degree of freedom adds a new stability
1+ 0)bY2/(20RY?). The resulting equatio'n s condition, given bye>k*(7+ y)/[3(1— )], which corre-
' sponds to the relative phase; this condition is more restrictive

A than the previous one for<Qy<1.

_ CH(14i1V2)2A, — (AL |2+ _12)A. For Coun_terpropagatln.g wavesk (=—k_), coupled

ot (e= DA+ AHIVH A= (A H 1A DA, phase equations are obtained,

)

6

8k |
—)) b (9

6

e 8k ))ansi. ®)

01+ = —4Kdydh++ 2(1_7
-+

where e=R40?/(1+ o)? is proportional to the distance to
threshold, and the coupling parameieis related to material
decay rate§y=(b+c)/(2c)]. The main difference with the Equation(6) has two equal stability conditions, namely,
form of the standard Swift-Hohenberg equation is that the>k*(7—37)/[3(1— y)]. This condition is, again, more re-
Laplacian is imaginary, representing diffraction instead ofstrictive than the one that corresponds to the scalar case for
diffusion; this difference makes the usual potenfia) not 0<y<1.

suitable in this case. Equatid) is a simple model, with In Fig. 1 we show the stability regions for both cases.
only two free parameters, useful to theoretically study transNote that, wheny—0, the stability conditions tend te
verse patterns in lasers at peak gaid=0) and when the >7/3k* (scalar case since, in this case, the vectorial H8)
vectorial degree of freedom of the light is taken into accountis transformed into two independent scalar equations. When
(It can be shown that the necessary precision for the condiy—1 from the left, the Busse balloon shrinks to a narrow
tion Q=0 is Q<R.) Sinceb andc are positive constants vertical band centered abokit=0. The stability domain dis-
andc>b, the range of possible values ¢fis between 1/2 appears fory>1 and traveling waves with equal amplitude
and 1. But, as we mentioned before, one of the main qualities both fields are no longer stable.

of amplitude equations is their universality. Then, because of The main result of the previous linear stability analysis is
the potential application of E@3) to other physical systems that the vectorial case is not a trivial extension of the scalar
(mainly optica) it is interesting to study its behavior for all case, since drastic changes in the stability of traveling waves
possible values of parametessand . are introduced.
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FIG. 1. Existence and stability regions of the traveling wave FIG- 3. Rigid and symmetric structure of defects that move in
solution. The continuous line is the limit of the existence domain.the direction of the arrow. From left to right, amplitug. | and
The dotted line is the limit of the stability domain in the scalar casePha@sed.. . Parameterse=2, y=0.1.
(or y=0). The region filled with parallel lines is the stability do-
main of traveling waves wity=0.5. (a) Copropagating wavesh) ~ and Zf) correspond toe=2 and y=0.1; in this case, the
counterpropagating waves. defect-dominated pattern gives place to a plane wave. The

role of the defects is reduced to dislocations in the stripe

Starting from random initial conditions in 2D, we found pattern, as is clearly seen in the phase pkt. 2(f)]. The
numerically [16] a rich variety of behaviors. We mention defects are drifted in the direction of propagation of the plane
only three characteristic situations, shown in Fig. 2. In Figswave. In some cases, the defects arrange in stable and com-
2(a) and 2b) we show amplitude and phase of one of theplex structures as the one shown in Fig. 3. The structure
components of the field far=0.3 andy=0.1; domains with moves as a rigid body in the direction of the arrow.
a phase singularity delimited by shock waves are seen in the We found that, for some specific values of the parameters
amplitude, while spiral patterns appear in the phase. Similaffor example,e=1 andy= —0.1), vectorial topological de-
patterns have been found in the scdla¥,18 or vectorial  fects are stablésee Fig. 4 These are defects that are present
CGLE [19,15; the difference here is that the spirals appearsimultaneously in both components of the field at the same
distorted, with great variations of the pitch. The amplitudepoint[21,22.
evolves very slowly in time; this situation is usually consid-  Another interesting and new localized structure is an am-
ered as a frozen phag20]. Patterns obtained for the param- plitude spiral(note that, in optical pattern formation, spirals
eters in the allowable range for lasers are of this kind. Fig-usually appear only in the phasghown in Fig. 5. The figure
ures Zc) and 2d) corresponds teé=1.5 andy=1.5; fory  shows that the amplitude spiral is directly related with the
>1 the homogeneous stable solutions @e=0, Q%ze, module of the phase gradient. Another important factor for
and the system segregates in regions where each solutitime formation of this structure is the presence of the vectorial
dominates. There are also defects or phase singularities. Tlweupling between the components of the field. The amplitude
bright dots in black background correspond to defects in thepiral disappears if the coupling is eliminated.
other component of the field. Note that, in this case, the In conclusion, we introduced the vectorial CSHE for the
phase spirals are two armed, meaning that the topologicalescription of transverse patterns of lasers at peak gain. The
charge of the defects is=*=2. This is not a common situ-
ation since usually defects with topological chajge>1 are —— p——
unstable and detach in defects of smaller charge. Figyss 2 =
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FIG. 4. Vectorial defects. From left to rightA.|, |A_| and
A global phase¢,.=6,+6_. Top row: argument defecf{same
charge. Bottom row: director defectopposite charge A two-
FIG. 2. Numerical results starting from random initial condi- armed spiral appears in the global phase of the argument defect
tions. Top row:|A |, bottom row: phasé, . (a) and(b) e=0.3, while a target pattern appears for the director defect. Parameters:
v=0.1; (c) and(d) e=1.5, y=1.5; (¢) and(f) e=2, y=0.1. e=1, y=—-0.1.
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tude equation models, such as vectorial defects, domains
separated by shock waves, and segregation and competition
between two different homogeneous solutions. Others were
not previously reported in optical systems, such as spiral
waves with distorted pitch, phase singularities with charge
greater than 1, and amplitude spirals, which require further

FIG. 5. From left to right|A. | (black=0.9,white=1.05), ¢, ,  and more extensive analysis.
and|V 6, |. The amplitude spiral is directly related with the gradient  \q 4. thanks M. San Miguel, E. Hefndez-Gara, P. Co-
of the phase. Parameteis=0.5, y=—0.5. let, and G. I1zs for helpful discussions. This work was par-
tially supported by Consejo Nacional de Investigaciones Ci-

vectorial character of the equation modifies the stability ofenfficas y Tenicas(CONICET, Argentina, Grant No. PIP
traveling waves via a polarization instability. Numerical 4342/96 and Agencia Nacional de PromonicCientfica y
simulations reveal a wide variety of behaviors and localizedTecnola@ica (ANPCyT, Argentina, Grant No. PICTO 2000-
structures. Some of them were already seen in other ampl2001, Grant No. 03-08431
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